Quadcopter – Beginners 2 Extreme

Quadcopter – Beginners 2 Extreme – Hardware Review


Quadcopter Share this From Drone-Flyers:

Quadcopter: In this article Quadcopter – Beginners 2 Extreme is the quadcopter components and how to choose them. This is a tutorial series how-to build a quadcopter. In the next post I will be talking about software, how to go about the algorithm and programming.

How To Build A Quadcopter – Choosing Hardware – Beginners 2 Extreme

Quadcopter – Beginners 2 Extreme If you are planning on building a quadcopter but not sure how, this is the right place for you. Doing research is pretty boring, so I am trying to put together a comprehensive tutorial about quadcopter, hope it helps you as much as it helped me.

Building a quadcopter from scratch takes a lot of time and effort. If you are inpatient, afraid of programming/maths and has a good budget, you can just buy a pre-built kit.

You could get it assembled within minutes before it’s flying (For example, like this one). But I have to say, you are missing the fun part of building a quadcopter. From choosing the parts, designing the circuits, to programming, you will be involved in every aspect of building a quadcopter, and it’s FUN!

For more tutorials, check out this list. If you have any questions, just leave me with comments.

Recently I am in love with mini quad, check out my mini quad FPV video playlist, it documents my FPV learning adventure. If you want to find out how to start in this hobby, check out my quadcopter beginner guide.

This blog post is divided into a three parts

  • What is a Quadcopter and How It Work
  • Quadcopter Components Introduction
  • Conclusion

What Is A QuadCopter and How It Works

Quadcopter – Beginners 2 Extreme is a helicopter with four rotors, so it’s also known as quadrotor. Because of its unique design comparing to traditional helicopters, it allows a more stable platform, making quadcopters ideal for tasks such as surveillance and aerial photography.

And it is also getting very popular in UAV research in recent years. The Quadcopters exist in many different sizes. From as small as a CD up to something as big as one meter in width.

tiny-quadcopter large_Quad_Copter_01

On this Quadcopter – Beginners 2 Extreme we have a regular helicopter has one big rotor to provide all the lifting power and a little tail rotor to offset the aerodynamic torque generated by the big rotor (without it, the helicopter would spin almost as fast as the propeller)

Unlike a helicopter, a quadrotor has four rotors all work together to produce upward thrust and each rotor lifts only 1/4 of the weight…

SO, we can use less powerful and therefore cheaper motors. The quadcopter’s movement is controlled by varying the relative thrusts of each rotor. These rotors are aligned in a square, two on opposite sides of the square rotate in clockwise direction and the other two rotate in the opposite direction.

If all rotors turn in the same direction, the craft would spin would spin just like the regular helicopter without tail rotor. (if you are not sure what I mean, check out this video) Yaw is induced by unbalanced aerodynamic torques.

The aerodynamic torque of the first rotors pair cancelled out with the torque created by the second pair which rotates in the opposite direction… SO, if all four rotors apply equal thrust the quadcopter will stay in the same direction.


Quadcopter – Beginners 2 Extreme we maintain balance the quadcopter must be continuously taking measurements from the sensors, and making adjustments to the speed of each rotor to keep the body level.

Usually these adjustments are done autonomously by a sophisticated control system on the quadcopter in order to stay perfectly balanced.

A quadcopter has four controllable degrees of freedom:
Yaw, Roll, Pitch, and Altitude. Each degree of freedom can be controlled by adjusting the thrusts of each rotor.


  • Yaw (turning left and right) is controlled by turning up the speed of the regular rotating motors and taking away power from the counter rotating; by taking away the same amount that you put in on the regular rotors produces no extra lift (it won’t go higher) but since the counter torque is now less, the quadrotor rotates as explained earlier.3.- control becomes a matter of which motor gets more power and which one gets less.
  • Roll (tilting left and right) is controlled by increasing speed on one motor and lowering on the opposite one.
  • Pitch (moving up and down, similar to nodding) is controlled the same way as roll, but using the second set of motors. This may be kinda confusing, but roll and pitch are determined from where the “front” of the thing is, and in a quadrotor they are basically interchangeable; but do take note that you have to decide which way is front and be consistent or your control may go out of control.



Within our dynamic focus of building a Quadcopter – Beginners 2 Extreme For example, to roll or pitch, one rotor’s thrust is decreased and the opposite rotor’s thrust is increased by the same amount.

This causes the quadcopter to tilt. When the quadcopter tilts, the force vector is split into a horizontal component and a vertical component.

This causes two things to happen: First, the quadcopter will begin to travel opposite the direction of the newly created horizontal component.

Second, because the force vector has been split, the vertical component will be smaller, causing the quadcopter to begin to fall. In order to keep the quadcopter from falling, the thrust of each rotor must then be increased to compensate.

This Quadcopter – Beginners 2 Extreme illustrates how the adjustments made for each degree of freedom must work together to achieve a desired motion.

Now, building and flying a quadrotor from a remote control is simple and fun stuff during construction.

People inherently enjoy a quadcopter in stable flight (in theory with equal speed of the motors the thing keeps itself level) and ease of control,

Only three functions and they are all basically take speed from one and put in the other, people love to make them autonomous (flies itself) and semi-autonomous (at least keeps itself level by responding to disturbances and error).

Quadcopter – Beginners 2 Extreme Components Introduction

There are sensors connected to a microcontroller to make the decision as to how to control the motors. Depending on how autonomous you want it to be, one or more of these sensors are used in combination.

In this section, I will talk about these essential quadcopter components:

  • Frame – The structure that holds all the components together. They need to be designed to be strong but also lightweight.
  • Rotors – Brushless DC motors that can provide the necessary thrust to propel the craft. Each rotor needs to be controlled separately by a speed controller.
  • Propeller
  • Battery – Power Source
  • IMU – Sensors
  • Microcontroller – The Brain
  • RC Transmitter
  • Optional

Before we go into explaining how to choose each components, we can take a look some quadcopters that people have built, and the parts they used to get a rough idea.

I didn’t build these planes, so I can’t guarantee their performance.


Frame is the structure that holds all the components together.

The Frame should be rigid, and be able to minimize the vibrations coming from the motors.


A QuadCopter frame consists of two to three parts which don’t necessarily have to be of the same material:

  • The center plate where the electronics are mounted
  • Four arms mounted to the center plate
  • Four motor brackets connecting the motors to the end of the arms

Most available materials for the frame are:

  • Carbon Fiber
  • Aluminum
  • Wood, such as Plywood or MDF (Medium-density fibreboard)

Quadcopter – Beginners 2 Extreme we have a carbon fiber is most rigid and vibration absorbent out of the three materials but also the most expensive.

Hollow aluminum square rails is the most popular for the Quadcopter’s arms due to its relatively light weight, rigidness and affordable.

However aluminum could suffer from motor vibrations, as the damping effect is not as good as carbon fiber. In cases of severe vibration problem, it could mess up sensor readings.

Wood board such as MDF plates could be cut out for the arms as they are better at absorbing the vibrations than aluminum. Unfortunately the wood is not a very rigid material and can break easily in quadcopter crashes.

Although it is not as important as for the arms which of the three material to use for the center plate, plywood is most commonly seen because of its the light weight, easy to work with and good vibration absorbing features.

As for arm length, the term “motor-to-motor distance” is sometimes used, meaning the distance between the center of one motor to that of another motor of the same arm in the Quadcopter terminology.


The motor to motor distance usually depends on the diameter of the propellers. To make you have enough space between the propellers and they don’t get caught by each other.

Brushless Motors

A little background of Brushless motor. They are a bit similar to normal DC motors in the way that coils and magnets are used to drive the shaft.

Though the brushless motors do not have a brush on the shaft which takes care of switching the power direction in the coils, and this is why they are called brushless.

Instead the brushless motors have three coils on the inner (center) of the motor, which is fixed to the mounting.


On the outer side it contains a number of magnets mounted to a cylinder that is attached to the rotating shaft.

So the coils are fixed which means wires can go directly to them and therefor there is no need for a brush.



Generally brushless motors spin in much higher speed and use less power at the same speed than DC motors.

Also brushless motors don’t lose power in the brush-transition like the DC motors do, so it’s more energy efficient.

Brushless motors come in many different varieties, where the size and the current consumption differ.

When selecting your brushless motor you should take care of the weight, the size, which kind of propeller you are going to use, so everything matches up with the current consumption.

When looking for the brushless motors you should notice the specifications, especially the “Kv-rating“.

The Kv-rating indicates how many RPMs (Revolutions per minute) the motor will do if provided with x-number of volts.

The RPMs can be calculated in this way: RPM=Kv*U An easy way to calculate rating of motor you need.

Make sure you buy the counter-rotating to counteract the torque effect of the props.

I have written a more complete guide on how to choose Motor and propeller.


On each of the brushless motors there are mounted a propeller.

You might not have noticed this on the pictures, but the 4 propellers are actually not identical.

You will see that the front and the back propellers are tilted to the right, while the left and right propellers are tilted to the left.

Like I mentioned before, 2 rotors rotates in the opposite directions to the other two to avoid body spinning.

By making the propeller pairs spin in each direction, but also having opposite tilting, all of them will provide lifting thrust without spinning in the same direction.

This makes it possible for the QuadCopter to stabilize the yaw rotation, which is the rotation around itself.


The propellers come in different diameters and pitches (tilting).

You would have to decide which one to use according to your frame size, and when that decision is made you should chose your motors according to that.

Some of the standard propeller sizes used for QuadCopters are:

  • EPP1045 10 diameter and 4.5 pitch  this is the most popular one, good for mid-sized quads
  • APC 1047 10 diameter and 4.7 pitch  much similar to the one above
  • EPP0845  8 diameter and 4.5 pitch  regularly used in smaller quads
  • EPP1245  12 diameter and 4.5 pitch  used for larger quads which requires lot of thrust
  • EPP0938  9 diameter and 3.8 pitch  used in smaller quads

Aerodynamics is just way too complex for non-academic hobbyists.

It’s even unlikely we can explain all that theory stuff in a few words.

But in general when selecting propellers you can always follow these rules:

  1. The larger diameter and pitch the more thrust the propeller can generate. It also requires more power to drive it, but it will be able to lift more weight.
  2. When using high RPM (Revolutions per minute) motors you should go for the smaller or mid-sized propellers. When using low RPM motors you should go for the larger propellers as you can run into troubles with the small ones not being able to lift the quad at low speed.

To learn about what effects the type of material have, on flight performance, check out this post.

Analysis of Propeller Pitch, Diameter, and RPM

Pitch VS Diameter: the diameter basically means area while pitch means effective area.

So with the same diameter, larger pitch propeller would generate more thrust and lift more weight but also use more power.

A higher RPM of the propeller will give you more speed and maneuverability, but it is limited in the amount of weight it will be able to lift for any given power.

Also, the power drawn (and rotating power required) by the motor increases as the effective area of the propeller increases, so a bigger diameter or higher pitch one will draw more power at the same RPM, but will also produce much more thrust, and it will be able to lift more weight.

In choosing a balanced motor and propeller combination, you have to figure out what you want your quadcopter to do.

If you want to fly around stably with heavy subject like a camera, you would probably use a motor that manages less revolutions but can provide more torque.

With a longer or higher pitched propeller (which uses more torque to move more air in order to create lift).

ESC – Electronic Speed Controller

The brushless motors are multi-phased, normally 3 phases, so direct supply of DC power will not turn the motors on.

Thats where the Electronic Speed Controllers (ESC) comes into play.

The ESC generating three high frequency signals with different but controllable phases continually to keep the motor turning.

The ESC is also able to source a lot of current as the motors can draw a lot of power.


The ESC is an inexpensive motor controller board that has a battery input and a three phase output for the motor.

Each ESC is controlled independently by a PPM signal (similar to PWM).

The frequency of the signals also vary a lot, but for a Quadcopter it is recommended the controller should support high enough frequency signal, so the motor speeds can be adjusted quick enough for optimal stability (i.e. at least 200 Hz or even better 300 Hz PPM signal). ESC can also be controlled through I2C but these controllers are much more expensive.

When selecting a suitable ESC, the most important factor is the source current.

You should always choose an ESC with at least 10 A or more in sourcing current as what your motor will require.

Second most important factor is the programming facilities, which means in some ESC you are allowed to use different signals frequency range other than only between 1 ms to 2 ms range, but you could change it to whatever you need. This is especially useful for custom controller board.


As for the power source of the quadcopter, I would recommend LiPo Battery because firstly it is light, and secondly its current ratings meet our requirement. NiMH is also possible. They are cheaper, but it’s also a lot heavier than LiPo Battery.


Battery Voltage

LiPo battery can be found in a single cell (3.7V) to in a pack of over 10 cells connected in series (37V). A popular choice of battery for a QuadCopter is the 3SP1 batteries which means three cells connected in series as one parallel, which should give us 11.1V.

Battery Capacity

As for the battery capacity, you need to do some calculations on:

  • How much power your motors will draw?
  • Decide how long flight time you want?
  • How much influence the battery weight should have on the total weight?

A good rule of thumb is that you with four EPP1045 propellers and four Kv=1000 rated motor will get the number of minutes of full throttle flight time as the same number of amp-hours in your battery capacity. This means that if you have a 4000mAh battery, you will get around 4 minutes of full throttle flight time though with a 1KG total weight you will get around 16 minutes of hover.

Battery Discharge Rate

Another important factor is the discharge rate which is specified by the C-value. The C-value together with the battery capacity indicates how much current can be drawn from the battery.

Maximum current that can be sourced can be calculated as:

MaxCurrent = DischargeRate x Capacity

For example if there is a battery that has a discharge rate of 30C and a capacity of 2000 mAh. With this battery you will be able to source a maximum of 30Cx2000mAh = 60A. So in this case you should make sure that the total amount of current drawn by your motors won’t exceed 60A.

This tutorial about battery I found very informative. I did a math model to estimate the flight time, which might be helpful to you.

IMU – Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is an electronic sensor device that measures the velocity, orientation and gravitational forces of the quadcopter. These measurements allow the controlling electronics to calculate the changes in the motor speeds.

The IMU is a combination of the 3-axis accelerometer and 3-axis gyroscope, together they represent a 6DOF IMU. Sometimes there is also an additional 3-axis magnetometer for better Yaw stability (in total 9DOF).

How does IMU work

The accelerometer measures acceleration and also force, so the downwards gravity will also be sensed. As the accelerometer has three axis sensors, we can work out the orientation of the device.


A gyroscope measure angular velocity, in other words the rotational speed around the three axis.


Using Only Accelerometer?

With the accelerometer alone, we should be able to measure the orientation with reference to the surface of earth. But the accelerometer tends to be very sensitive and unstable sometimes, when motor vibration is bad, it could mess up the orientation. Therefore we use a gyroscope to address this problem. With both the accelerometer and gyroscope readings we are now able to distinguish between movement and vibration.

Using Only Gyroscope?

Since the gyroscope can tell us the rotational movement, why can’t we just use the gyroscope alone?

The gyroscope tends to drift a lot, which means that if you start rotating the sensor, the gyroscope will output the angular velocity, but when you stop it doesn’t necessarily go back to 0 deg/s. If you then just used the gyroscope readings you will get an orientation that continues to move slowly (drifts) even when you stopped rotating the sensor. This is why both sensors has to be used together to calculate a good and useful orientation.


The accelerometer cannot sense yaw rotation like it can with roll and pitch, and therefore a magnetometer is sometimes used.

A magnetometer measures the directions and strength of the magnetic field. This magnetic sensor can be used to determine which way is south and north. The pole locations are then used as a reference together with the Yaw angular velocity around from the gyroscope, to calculate a stable Yaw angle.

I am trying to keep the theory and maths minimal here, and I will go into more detail in the next couple of tutorials.


Buying an IMU

These three sensors are available individually on the market. But it is easier for development to get an IMU sensor board with the first two sensors (6DOF) or all three sensors (9DOF).


The raw sensor boards can communicate with the microcontroller via I2C or analogue. Digital boards that support I2C is easier and faster for development, but Analogue ones are cheaper.

There are even complete IMU units with processor available. Usually the processor is a small 8-bit microprocessor which runs computations some kind of algorithms to work out the Pitch, Roll and Yaw. The calculated data will then be put out on a serial bus or sometimes also available by I2C or SPI.

The choice of IMU is going to narrow down what type of controller board you can use. So before purchasing an IMU boards you should find out information about the controller boards. Some controller boards even comes with built-in sensors.

Some commercially available IMU sensors boards:

IMU with processor:

Flight Controller – Controlling electronics

You can either buy a controller board that is specially designed for quadcopter or buy all the parts and assemble one yourself. Some of the controller boards already contain the required sensors while other requires you to buy these on a separate board.

Here is a comprehensive list of ready to go flight controller boards:



The AeroQuad MEGA Shield The AeroQuad board is a shield for the Arduino, either the Arduino UNO or the Arduino MEGA. The AeroQuad board requires the Sparkfun 9DOF stick which is soldered to the shield.

The ArduPilot board contains an ATMEGA328, the same as on the Arduino UNO. Like the AeroQuad shield this board doesn’t contain any sensors either. You would have to buy the ArduIMU and connect it to the board to use it.

The OpenPilot is a more advanced board which contains a 72MHz ARM Cortex-M3 processor, the STM32. The board also includes a 3-axis accelerometer and 3-axis gyroscope. Together with the board comes a great piece of software for the PC to calibrate, tune and especially set waypoints for your QuadCopter if you have installed a GPS module which I will be talking more about in the next section.

Make You Own Quadcopter Controller Board


Alternatively you can also use general purpose microcontroller, such as Arduino, to build your own flight controller.

RC Transmitter

QuadCopters can be programmed and controlled in many different ways but the most common ones are by RC transmitter in either Rate (acrobatic) or Stable mode. The difference is the way the controller board interprets the orientations feedback together with your RC transmitter joysticks.

In Rate mode only the Gyroscope values are used to control the quadcopter. The joysticks on your RC transmitter are then used to control and set the desired rotation speed of the 3 axes, though if you release the joysticks it does not automatically re-balance. This is useful when doing acrobatics with your quadcopter as you can tilt it a bit to the right, release your joysticks, and then your quadcopter will keep that set position.

For the beginners the Rate mode might be too difficult, and you should start with the Stable mode. All the sensors are used to determine the quadcopters orientation in the stable mode. The speed of the 4 motors will be adjusted automatically and constantly to keep the quadcopter balanced. You control and change the angle of the quadcopter with any axis using the joystick. For example to go forward, you can simply tilt one of the joysticks to change the pitch angle of the quadcopter. When releasing the joystick, the angle will be reset and the quadcopter will be balanced again.

Check here for a more detailed RC transmitter article.

Optional Components

After buying all the necessary parts, and you are still not broke, you might consider other popular optional components such as GPS modules, ultrasonic sensors, barometers etc. They can enhance the performance of your quadcopter, and bring more features.

A GPS module talks to the satellite and retrieve accurate location information. We can use this information to calculate speed and path. It is especially useful for autonomous quadcopters which needs to know its exact position and which way to fly.

An ultrasonic sensor measures the distance to the ground, i.e. altitude. This is useful if you want to keep your quadcopter a certain distance from the ground without having to adjust the height it’s flying at constantly yourself. Most of these sensors has a range between 20cm to 7m.

When you gets higher, you might want to use a barometer. This sensor measures humidity and pressure to work out the altitude, so when the quadcopter is close to the ground (where these two factors doesn’t change much), it becomes ineffective. Therefore it is also common to use both of them at the same time.


Hopefully this article has given you a better understanding what each part of the quadcopter does, and how to go about selecting the right product for your quadcopter. To learn more about flying a Quadcopter, see this beginner guide about control.

Please do not hesitate writing a comment or giving us some feedback on this article. The next post will be about the software side of the quadcopter.

If you are into FPV and Video taking, you might find this collection of FPV videos interesting.

5 of the Best Examples How to Build a DIY Quadcopter

Doing research to learn how to build a quadcopter is a time-consuming task and pretty boring. This is one of the reasons that I write this article with simple, cheap, customizable and different multicopters. To build a DIY quadcopter you have to combine hardware and software skills, and to feed your inspiration, you can explore the examples described in this article and build your first DIY quadcopter with different features and functionality.

A quadcopter has a unique design that can be comparable to traditional helicopters, but with improved characteristics for stabilization. Do-it-yourself is a popular building method where can be included the 3D printing process, kits, or just purchasing the components from several stores.

Depending on your budget, you can choose to build one of these projects that falling in several hundred dollars. Using plug-and-play methods, these projects can be done at home by beginners with a minimum level of programming and electronics skills.

A quadcopter is ideal for several tasks including here aerial photography, surveillance, or research, and is a good chance to learn about construction and how to control a multicopter. Let’s take a look.

Sturdy Quadcopter BuildFDFSBT5HKUD42B4.MEDIUM


Sturdy Quadcopter Build

Comprehensive guide to build a simple quadcopter for beginners.
With skills like basic soldering and electronics, Chris Schroeder shows you step-by-step how to build from scratch a quadcopter. The guide is intended for beginner users having a plug-and-play construction system and a simple programming code.

All components are purchased from online stores while for programming the designer used a flight control board and a programming card. The values for the flying robot are set by the brushless Electronic Speed Controller (ESC).

Below is an impressive list of the main parts needed to build the quadcopter.


Basic QuadCopterBasic+QuadCopter


Basic QuadCopter

Simple guide that teaches you how to build a simple, cheap and speedy quadcopter.
Basic QuadCopter is a simple guide for a beginner that explains in steps how to build a simple and cheap quadcopter. The first version of the flying robot is engineered with short arms, and another version is available with long arms for propeller protection.Whatever version you choose, are available all the instructions to build: when you build a quadcopter in X style or the + style.


Build A Quadcopter From Scratch


Build A Quadcopter From Scratch

Very detailed tutorial from where you can learn how to build a quadcopter from scratch and how to add additional components.
In terms of resources, sometimes is hard to find in one place all you need to build a flying robot. But these comprehensive tutorials can be what you want.Chapter after chapter, this series of tutorials explain in details how to choose parts, how to design the circuits, how to program and how to test the quadcopter.

All the essential components of a quadcopter are explained so you can understand how to use each of them in various cases.


Easy DIY Quadcopter Build


Easy DIY Quadcopter Build

A series of tutorials from where you can learn how to build a simple, cheap and customizable quadcopter.
Great things can be built easily and with a small amount of money. In this guide, you can find all the steps to build a cheap and budget quadcopter. Also, there are information about how to add new features to the project, something like a GoPro camera.

The guide is split into five parts including here the first part where are presented the components, second part that teaches you how to build the quadcopter, the third part that contains information about how to set up the transmitter, the fourth part of the guide is for optimization, while the last part shows you how to attach a GoPro camera to the quadcopter.

The final result of this project is a solid quadcopter that flies well and equipped with different components. Below I made a list of general components that can be found in these tutorials.


My First Quadrotor2013-01-19 02.06.44


My First Quadrotor

This guide shows you how to build at home a simple, robust, and very cheap quadcopter.
Building the quadcopter explored in this guide could be a good exercise to test your hardware and software skills. Like many other projects from this article, this quadcopter is inexpensive even it is built from durable materials and has attached a powerful atmega328 microcontroller.Very well documented, this guide provides you step by step the proper information to assemble the frame, attach the motors, propellers, battery, controller and shows you how to wire the components.


Related articles:


GigaByte-Motherboard GA-Z68MA-D2H-B3 (rev. 1.3)

  • Supports for LGA1155 2nd Generation Intel® Core™ Processors
  • Supports Virtu™ GPU virtualization software for extreme display
  • Touch BIOS™ delivers No Need for Reboot to more easily modify BIOS settings.
  • 4X performance boost with the Intel® Smart Response Technology
  • Supports USB 3.0 with superfast transfer rates of up to 5 Gbps
  • High speed SATA3 storage interface with superfast 6Gbps link speed
  • GIGABYTE 3x USB Power with On/Off Charge USB ports
  • SLI and CrossFireX multi-graphics support for ultimate graphics performance
  • Hybrid EFI technology with DualBIOS for 3TB HDD support
  • HDMI/ DVI interface for smoother HD video playback
  • Enhanced Intel HD Graphics 2000/3000 integrated with the processor
  • XHD technology accelerating hard drive performance with ease
  • Supports next generation PCI Express Gen.3 for maximum data bandwidth

Introduction:  Combining the advantages of the Intel® P67 and H67 platforms in one complete package, the GIGABYTE Z68 series offer the best of both worlds; users can take advantage of the system tuning and overclocking features found in the Intel® P67 platform as well as the built-in visual features of the H67 platforms when combined with 2nd generation Intel® Core ™ processors.
Support Intel 22nm processors

GIGABYTE motherboards support Intel 22nm processors.
Designed for PCI Express Gen.3 Support

The GIGABYTE motherboard is fully configured to provide gamers with the latest Gen.3 PCI Express technology, delivering maximum data bandwidth for forthcoming discrete graphics cards.
* PCIe Gen. 3 is dependent on CPU and expansion card compatibility.
GIGABYTE Touch BIOS™ (Patent Pending)
An Innovative New Way to Modify BIOS Settings
Navigating through the BIOS to change system settings can be a daunting task for users not familiar with control “F”functions and mouse-less navigation. While some EFI BIOS try to address this with a mouse friendly environment, many implementations still lack a certain ease-of-use necessary for most people. With GIGABYTE Touch BIOS™, GIGABYTE engineers have completely re-imagined how users can interact with their BIOS, allowing for a more intuitive user experience. In fact, with a touch screen monitor, GIGABYTE Touch BIOS™ is as easy to use as most apps on your iPhone.
Supports Intel® Smart Response Technology

GIGABYTE Z68 series motherboards are equipped with the much anticipated Intel® Smart Response Technology, allowing users to experience system performance similar to SSD only systems. Intel® Smart Response technology works by using intelligent block-based caching of frequently used applications to improve system performance and responsiveness. In fact, GIGABYTE Z68 motherboards with Intel® Smart Response Technology are able to outperform hybrid drive systems by more than 2X (PC Mark Vantage HDD test) and HDD-only systems by as much as 4X (PC Mark Vantage HDD test) and deliver a 60% performance improvement over HDD-only systems in PC Mark Vantage Suite.* 4X+ Faster than HDD-only system in PC Mark Vantage(HDD Score)

** The Intel Smart Response Technology requires a computer system with an Intel Z68 chipset-based motherboard and an Intel Core i3/i5/i7 series Processor.

Download : Intel Smart Response SSD Available Vender List

GIGABYTE EZ Smart Response

The GIGABYTE EZ Smart Response utility is a simple application that allows users to quickly and easily configure their system for Intel® Smart Response Technology. In the past, enabling Intel® Smart Response meant users needed to enter the BIOS in order to configure their system for RAID mode, which then required a complete reinstall of the operating system. Once that processes was complete, users then needed to install the Intel® Rapid Storage Utility as well as configure Intel’s Smart Response Technology. GIGABYTE EZ Smart Response does all of this automatically, without users having to perform a complicated install process. This allows them to quickly and effortlessly enjoy a significant boost in system performance…more

* The EZ Smart Response Technology requires a computer system with an Intel Z68 chipset-based motherboard and an Intel Core i3/i5/i7 series Processor.

Built-in Visuals

Built-in Visuals GIGABYTE Z68 motherboards offer support for several 2nd generation Intel® Core™ Built-in Visual Features.

Intel® Quick Sync Video
Up to 2X faster media processing than any other solution for incredibly fast conversion of video files for portable media players or online sharing.

Intel® InTru™ 3D
Users can enjoy the ultimate 3D visual experiences–seamlessly–from their PC. Now they can watch their favorite 3D movies with Blu-ray Stereo 3D playback using active shutter 3D glasses. It delivers it all in 1080p full, high-definition resolution on the TV over HDMI 1.4.

Intel® Insider
Allows users to view premium 1080p HD content on their GIGABYTE Z68 series system.

Switchable Graphics with LucidLogix Virtu GPU Virtualization
GIGABYTE Z68 motherboards are enabled with LucidLogix Virtu GPU Virtualization technology which allows users to dynamically switch between their built-in graphics and their high-end, 3D discrete graphics cards. This is ideal for gamers who require high-resolution gaming and still want to enjoy the built-in media features of 2nd generation Intel® Core™ processors. In so doing, switchable graphics helps to dramatically reduce PC graphics power consumption.

New 100% Hardware VRD 12 Compliant CPU Power Design

GIGABYTE 6 series motherboards incorporate an Intel® approved Intersil PWM controller that is VRD 12 (Voltage Regulator Down) compliant. This means that it offers new features that include SerialVID (SVID) which transfers power management information between the processor and voltage regulator controller, allowing more robust and efficient signaling control between the CPU and PWM controller – hence, delivering a more energy efficient platform.

Intel® HD Graphics Core 2000/3000 Enhanced Visual Features

Intel® Quick Sync Video
Intel® Quick Sync Video provides breakthrough media processing for incredibly fast editing and sharing.

Intel® InTru™ 3D
2nd Generation Intel® Core™ Processors offer an outstanding Blu-Ray Stereo 3D experience in full high definition resolution (1080p) with HDMI 1.4.

Intel® Advanced Vector Extensions (AVX)
Increases the performance of Accelerated Floating Point and Vector Computing Intensive Applications with minimal power gains.

Driver MOSFETs – Integration of VRM Components

A traditional Voltage Regulator Module (VRM) consists of a Choke, Capacitors, MOSFETs and a Driver IC. By incorporating the MOSFETs and driver IC in accordance with the Intel® Driver-MOSFET specification, we can achieve higher power transfer and increased efficiency at higher switching frequencies to satisfy the growing power requirements of today’s processors. Driver-MOSFETs also help to reduce VRM real estate requirements in the CPU zone.
108dB Signal-to-Noise ratio playback
GIGABYTE strongly believes that in 2011, HD audio playback is a standard specification, and as such, we have made Blu-ray audio playback a standard for all of our motherboards.
All of GIGABYTE’s 2011 motherboards feature higher capability audio solution with 108dB Signal-to-Noise ratio (SNR) playback quality to deliver high-performance, multi-channel HD audio. SNR is a comparison of the amount of signal to the amount of noise such as hiss present in the signal (expressed in Decibels). A higher SNR equals a better audio experience. For example, 108dB, is a high audio specification, as this means the audio signal is 108dB higher than the level of the noise.
DualBIOS™ 3TB+ HDD Support (Hybrid EFI Technology)
Hybrid EFI Technology combines the benefits of GIGABYTE’s mature BIOS platform including stability and compatibility with 3rd party products with 3TB+ HDD support from EFI technology, allowing GIGABYTE to offer the best of both worlds through a quick and easy BIOS update using GIGABYTE’s @BIOS utility that is freely available from the GIGABYTE website.
GIGABYTE DualBIOS™ is a patented technology that automatically recovers BIOS data when the main BIOS has crashed or failed. Featuring 2 physical BIOS ROMs integrated onboard, GIGABYTE DualBIOS™ allows quick and seamless recovery from BIOS damage or failure due to viruses or improper BIOS updating. In addition, GIGABYTE DualBIOS™ now supports 3TB+ (terabyte) hard drive booting without the need for partitioning, and enables more data storage on a single hard drive.
On/Off Charge Technology
GIGABYTE On/Off Charge technology allows you to charge your iPhone, iPad and iPod Touch regardless of whether your PC is on, in standby mode or even off. A derivative of GIGABYTE’s highly acclaimed 3x USB Power feature, On/Off Charge enables devices to draw more current from GIGABYTE motherboard USB ports than standard USB ports allow, so that charging from your PC can be as fast as with a charger…more
*Due to certain mobile phone limitations, users may need to connect the mobile phone to their PC before the PC enters S4/S5 mode to enable a quick charge from non On/Off Charge USB ports. Charging results may vary by model.
*Whether to support 3X USB power design, it may vary by models.
On/Off Charge Driver download
SuperSpeed USB 3.0
GIGABYTE motherboards boast SuperSpeed USB 3.0 technology made possible through an additional onboard host controller. With superfast transfer rates of up to 5 Gbps, users are able to experience a theoretical 10x improvement over USB 2.0. Additionally, backwards compatibility with USB 2.0 assures users of long term use of their legacy USB 2.0 devices.
SATA 6 Gbps
GIGABYTE motherboards are High-Speed SATA Revision 3.0 compatible, delivering superfast 6Gbps link speeds for twice the data transfer rates of SATA Revision 2.0 (3 Gbps). When used in RAID 0 (Stripe) mode, they offer even faster data transfer rates of up to a theoretical 4x the speed of current SATA interfaces.
3x USB Power Boost
GIGABYTE motherboards feature a 3x USB power boost, delivering greater compatibility and extra power for USB devices. GIGABYTE’s unique USB power design is also able to efficiently regulate output over the full voltage range, which greatly enhances USB device compatibility. In addition, dedicated lower resistance fuses ensure lower voltage drops, and provide more stable and plentiful power delivery.
Turbo XHD- Full Automatic RAID 0
GIGABYTE Turbo XHD provides a quick and easy way to boost your hard drive performance by automatically detecting 2 new SATA3 HDDs and enabling users to effortlessly set up a RAID 0 configuration via an easy to use utility. RAID 0 boosts HDD performance by up to 4X.
Turbo XHD function only enabled for the SATA controllers integrated in the Intel Z68/P67/H67 Chipset.
HDMI™-The Next Generation Multimedia Interface
HDMI™ is a High-Definition Multimedia Interface which provides up to 5Gb/s video transmitting bandwidth and 8-channel high quality audio all through a single cable. Able to transmit superior, uncompressed digital video and audio, HDMI™ ensures the crispest rendering of digital content up to 1080p without the quality losses associated with analog interfaces and their digital-to-analog conversion. In addition, HDMI™ is compatible with HDCP (High-bandwidth Digital Content Protection), allowing the playback of Blu-ray/HD DVD and other protected media content.
DVI Support
DVI (Digital Visual Interface) is a video interface standard designed for carrying uncompressed digital video data and to maximize the visual quality of digital display devices, such as LCD monitors, digital projectors, and so on. In addition, the DVI interface is compatible with HDCP (High-bandwidth Digital Content Protection).
Multi-display support with CrossFireX and SLI™
Flexible graphics capabilities supported for either CrossFireX™ or SLI™ action, delivering the ultimate in graphics performance for gaming enthusiasts who demand the highest frame rates without compromising on resolution.
Smart 6 – Smarter PC system Management

Smart QuickBoot
Speeds up booting times.
Smart DualBIOS
Smart personal reminder of PC passwords.
Smart QuickBoost*
One-click Overclocking
Smart Recorder
Your PC’s Watch Dog
Smart Recovery 2
Allows you to go back in time on your PC and retrieve lost files
Smart TimeLock
Time Controller for your PC.

* Whether SMART QuickBoost is supported depends on the motherboard model.

Cloud OC
GIGABYTE Cloud OC is a free overclocking application that facilitates PC overclocking through any web browsing capable device such as a smart phone, iPad, iPhone, Netbooks or notebook PC. Being browser based, it connects via wireless Internet, Bluetooth or through an Ethernet cable, and its many functions are categorized into three tabs: Tuner, System Info and Control…more
Cloud OC download
AutoGreen- Greening your PC via Bluetooth cellphone
AutoGreen technology can automatically save power by simply putting your PC in a state of sleep when your Bluetooth® cell phone is out of range of your computer.
Note: GIGABYTE motherboards do not include a Bluetooth® receiver; the addition of a 3rd party Bluetooth receiver is required.
ErP Lot 6 support
The ErP (also known as Energy-Related Products Directive) is part of the European Union’s environmental regulations policy. It is based on concern for the environmental as the proliferation of electronic devices continues, and how to improve energy efficiency for a better and greener life. GIGABYTE supports ErP and produces motherboards that help you effectively improve system efficiency.
* The entire materials provided herein are for reference only. GIGABYTE reserves the right to modify or revise the content at anytime without prior notice.
* Advertised performance is based on maximum theoretical interface values from respective Chipset vendors or organization who defined the interface specification. Actual performance may vary by system configuration.
* All trademarks and logos are the properties of their respective holders.
* Due to standard PC architecture, a certain amount of memory is reserved for system usage and therefore the actual memory size is less than the stated amount.